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SUMMARY

We present and analyse a new mixed �nite element method for the generalized Stokes problem. The
approach, which is a natural extension of a previous procedure applied to quasi-Newtonian Stokes �ows,
is based on the introduction of the �ux and the tensor gradient of the velocity as further unknowns. This
yields a two-fold saddle point operator equation as the resulting variational formulation. Then, applying
a slight generalization of the well known Babu�ska–Brezzi theory, we prove that the continuous and
discrete formulations are well posed, and derive the associated a priori error analysis. In particular, the
�nite element subspaces providing stability coincide with those employed for the usual Stokes �ows
except for one of them that needs to be suitably enriched. We also develop an a posteriori error
estimate (based on local problems) and propose the associated adaptive algorithm to compute the �nite
element solutions. Several numerical results illustrate the performance of the method and its capability
to localize boundary layers, inner layers, and singularities. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The generalized Stokes problem, which is a Stokes-like linear system with a dominating ze-
roth order term, arises naturally in the time discretization of the corresponding non-steady
equations, and hence it plays a fundamental role in the numerical simulation of viscous in-
compressible �ows (laminar and turbulent). Indeed, the most expensive part of the solution
procedure for the time-dependent Navier–Stokes equations reduces to solving the generalized
Stokes problem at each nonlinear iteration. In order to de�ne it explicitly, we �rst let � be a
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bounded open subset of R2 with Lipschitz continuous boundary �. Then, given f ∈ [L2(�)]2
and g∈ [H 1=2(�)]2, we look for the velocity u := (u1; u2)t and the pressure p of a �uid occu-
pying the region �, such that

�u − ��u+∇p = f in �

div(u) = 0 in �

u = g on �

(1)

where � is a positive constant called kinematic viscosity of the �uid and � is a positive
parameter proportional to the inverse of the time-step. Throughout the rest of the paper we
assume that �¿�. Also, we remark that, as a consequence of the incompressibility of the
�uid, the Dirichlet datum g must satisfy the compatibility condition

∫
� g · n ds=0, where n

is the unit outward normal to �.
In recent years considerable e	ort has gone into the design and study of e
cient nu-

merical methods to solve (1). The new proposed algorithms apply and combine di	erent
techniques, which include Uzawa’s schemes, splittings of boundary conditions, �ctitious do-
mains, domain decomposition, stabilization, and preconditioning (see, e.g. References [1–7],
and the references therein). A common feature to these papers is that they all deal with the
usual pressure–velocity variational formulation of the problem, in which the unknowns live
in L2(�) and H 1(�), respectively. In particular, this means that the �nite element subspace
for the velocity needs to be a subset of the continuous functions. In addition, the Dirichlet
boundary condition, being essential and non-homogeneous, cannot be incorporated either in
the continuous and discrete formulations or in the de�nitions of the spaces involved, and
therefore one is necessarily led to a non-conforming Galerkin scheme. Certainly, the latter
concern refers to the theoretical analysis of the method since the interpolation of essential
boundary conditions causes no problems in the practical implementation of the corresponding
Galerkin scheme.
On the other hand, within a dual-mixed setting the velocity becomes an unknown in L2(�),

which gives more �exibility to choose the associated �nite element subspace (for instance,
piecewise constant functions become a feasible choice). Furthermore, the Dirichlet bound-
ary condition, being now natural, is incorporated directly into the right-hand sides (linear
functionals) of the continuous and discrete formulations, and hence the error analysis arising
from a non-conforming scheme is avoided. Another important advantage of using dual-mixed
methods lies on the possibility of introducing further unknowns with a physical interest (for
instance, the �ux). These unknowns are then approximated directly, which avoids any numer-
ical postprocessing yielding additional sources of error.
As a recent example of the above, we recall here that in References [8, 9] we introduce

and analyse a dual-mixed formulation for a class of quasi-Newtonian Stokes �ows whose
kinematic viscosities are nonlinear monotone functions of the gradient of the velocity. The
mixed �nite element method proposed there simply relies on the introduction of the �ux and
the tensor gradient of the velocity as auxiliary unknowns, which yields a two-fold saddle
point operator equation as the resulting variational formulation. Therefore, the abstract theory
developed in Reference [10], which is a slight generalization of the well known Babu�ska–
Brezzi theory, is applied to prove that the continuous and discrete schemes are well posed. In
particular, it is shown that the stability of the Galerkin scheme only requires low-order �nite
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A MIXED FINITE ELEMENT METHOD 879

element subspaces: it su
ces to use Raviart–Thomas spaces of order zero to approximate the
�ux and piecewise constant functions to approximate the other unknowns. In addition, since
the monotonicity certainly includes the linear case, we also obtain as a by-product a new
mixed �nite element method for the linear Stokes equation (problem (1) with �=0).
Up to the authors’ knowledge, there are no dual-mixed methods available in the current lit-

erature for the generalized Stokes problem. This gap is somehow �lled by the present work,
and hence we believe this is one of the main motivations for it. More precisely, the pur-
pose of this paper is to extend the analysis from References [8, 9] to our problem (1) with
moderately large values of the parameter �, which includes, similarly as we did in Refer-
ence [9], the derivation of a posteriori error estimates based on local problems. The rest of the
paper is organized as follows. In Section 2, we derive the continuous dual-mixed variational
formulation of problem (1) and prove that it is well posed. Then, in Section 3, we present
and analyse the corresponding mixed �nite element scheme. Again, we use Raviart–Thomas
spaces of order zero to approximate the �ux and piecewise constant functions to approximate
the velocity and the pressure. However, in order to guarantee the stability of the Galerkin
scheme, we need to include in the approximation space of the tensor gradient of the velocity
the deviator of the vector Raviart–Thomas space of order zero. In this way, we prove that
the discrete scheme has a unique solution and derive quasi-optimal error estimates and the
corresponding rates of convergence. Next, in Section 4, we develop an implicit reliable and
quasi-e
cient a posteriori error estimate, and a fully explicit reliable one, and propose the
adaptive algorithm associated to the latter to compute the �nite element solutions. Finally,
several numerical results are reported in Section 5.
In what follows, given any Hilbert space H , we denote by H 2 and H 2×2 the spaces of

vectors and tensors of order two, respectively, with entries in H , provided with the product
norms induced by the norm of H . In addition, for any � := (�ij); � := (�ij)∈R2×2, we denote
tr (�) := �11 + �22 and � : � :=

∑2
i; j=1 �ij�ij. The deviator of tensor � is denoted by dev (�) :=

� − 1
2 tr (�)I. We remark that tr (dev (�))=0.

2. THE CONTINUOUS VARIATIONAL FORMULATION

We �rst proceed as in Reference [8] and introduce two additional unknowns in �, namely,
the tensor gradient of the velocity t :=∇u and the �ux � := �∇u−pI, where I is the identity
matrix in R2×2. It follows that the equilibrium equation becomes

�u − div (�)= f in � (2)

where � := �t−p I and div denotes the vector divergence operator. In addition, since div (u)=
tr (t) in �, we can rewrite the incompressibility condition as

tr (t)=0 in � (3)

Now, multiplying the relation t=∇u by a tensor �, integrating by parts and using that
u= g on �, we get: ∫

�
� : t+

∫
�
div (�) · u= 〈�n; g〉 ∀�∈H (div ; �) (4)
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Hereafter, 〈·; ·〉 denotes the duality pairing of [H−1=2(�)]2 and [H 1=2(�)]2 with [L2(�)]2 as
pivot space, and H (div ; �) is the space of tensors �∈ [L2(�)]2×2 satisfying div (�)∈ [L2(�)]2.
We also recall that H (div ; �), endowed with the inner product 〈�; �〉H (div ;�) := 〈�; �〉[L2(�)]2×2 +
〈div �; div �〉[L2(�)]2 , is a Hilbert space, where 〈·; ·〉[L2(�)]2×2 and 〈·; ·〉[L2(�)]2 stand for the usual
inner products of [L2(�)]2×2 and [L2(�)]2, respectively.
Then, testing the relation �= �t−p I, Equations (2) and (3), and reordering appropriately

the resulting equations and (4), we obtain the following mixed variational formulation: Find
(t; u;�; p)∈ [L2(�)]2×2 × [L2(�)]2 ×H (div ; �)×L2(�) such that

�
∫
�
t : s −

∫
�
� : s −

∫
�
p tr (s) = 0

�
∫
�
u · v −

∫
�
div (�) · v =

∫
�
f · v

−
∫
�
� : t −

∫
�
div (�) · u = − 〈�n; g〉

−
∫
�
q tr (t) = 0

(5)

for all (s; v; �; q)∈ [L2(�)]2×2 × [L2(�)]2 ×H (div ; �)×L2(�).
Next, we observe that the variational formulation (5) is not uniquely solvable since given

any solution (t; u;�; p) of this problem and any c∈R, (t; u;� + cI; p − c) also becomes a
solution. Therefore, in order to guarantee uniqueness we proceed as in Reference [11] and
require that

∫
� tr (�)=0, which leads to the introduction of a new unknown, a Lagrange

multiplier �∈R. Thus, from now on we consider the following mixed variational formulation
of (1): Find (t; u;�; p; �)∈ [L2(�)]2×2 × [L2(�)]2 ×H (div ; �)×L2(�)×R such that

�
∫
�
t : s −

∫
�
� : s −

∫
�
p tr (s) = 0

�
∫
�
u · v −

∫
�
div (�) · v =

∫
�
f · v

−
∫
�
� : t −

∫
�
div (�) · u + �

∫
�
tr (�) = − 〈�n; g〉

−
∫
�
q tr (t) = 0

�
∫
�
tr (�) = 0

(6)

for all (s; v; �; q; �)∈ [L2(�)]2×2 × [L2(�)]2 ×H (div ; �)×L2(�) × R. We remark here that
taking �= I in the third equation and applying (3) and the compatibility condition for the
Dirichlet datum, we �nd a priori that �=0. However, we keep this arti�cial unknown to
ensure the symmetry and the well-posedness of the whole formulation.
In order to prove the unique solvability of the variational formulation (6), we write it now

as a system of operator equations with a two-fold saddle point structure. To this end, we
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A MIXED FINITE ELEMENT METHOD 881

�rst de�ne the spaces X1 := [L2(�)]2×2 × [L2(�)]2, M1 :=H (div ; �), and M :=L2(�) × R.
Then, we introduce the operators and functionals A1 :X1 →X ′

1 , B1 :X1 →M ′
1, B

p :X1 →L2(�),
B� :M1 →R, F1 ∈X ′

1 , and F2 ∈M ′
1, as suggested by the structure of (6), so that this problem

can be stated as: Find ((t; u);�; (p; �))∈X1 ×M1 ×M such that

[A1(t; u); (s; v)] + [B1(s; v);�] + [Bp(s; v); p] = [F1; (s; v)]

[B1(t; u); �] + [B�(�); �] = [F2; �]

[Bp(t; u); q] + [B�(�); �] = 0

(7)

for all ((s; v); �; (q; �))∈X1 ×M1 ×M , where [·; ·] denotes the duality pairing induced by the
operators and functionals used in each case.
We now let X :=X1 ×M1, identify X ′ with X ′

1 ×M ′
1, and de�ne A :X →X ′ as the matrix

operator

A :=

[
A1 B′

1

B1 O

]
(8)

where B′
1 :M1 →X ′

1 is the adjoint of B1, and O denotes, from now on, a generic null
operator=functional. Hence, (7) can be set equivalently as: Find ((t; u;�); (p; �))∈X ×M such
that [

A B′

B O

][
(t; u;�)

(p; �)

]
=

[
F

O

]
(9)

where B :X →M is de�ned by [B(r;w; �); (q; �)] := [Bp(r;w); q] + [B�(�); �], B′ :M →X ′ is
the adjoint of B, and F∈X ′ is de�ned by [F; (s; v; �)] := [F1; (s; v)] + [F2; �] for all (s; v; �);
(r;w; �)∈X and for all (q; �)∈M . In this way, the two-fold saddle point structure of (7)
becomes clear from (8) and (9) since A itself has the saddle point structure.
We now apply the abstract theory from Reference [10] (see also the related results given

in References [12, 13]) to establish the solvability and continuous dependence of (7).

Theorem 1
Problem (7) has a unique solution ((t; u);�; (p; �))∈X1 ×M1 ×M . Moreover, there exists a
positive constant C(�; �)=O(�3=�), independent of the solution, such that

‖((t; u);�; (p; �))‖X1×M1×M6C(�; �){‖F1‖+ ‖F2‖} (10)

Proof
We observe �rst that the operators A1, B1 and B are all linear and bounded. In particular, it
is easy to see that ‖A1‖=O(�) and that both ‖B1‖ and ‖B‖ are of O(1). In addition, since
�¿�, we deduce that A1 is X1-elliptic with ellipticity constant �. Thus, according to the linear
version of Theorem 2.4 in Reference [10] (see also Theorem 2 in Reference [12]), it only
remains to show that B and B1 satisfy the corresponding inf–sup conditions on X ×M and
on the kernel of B, respectively.
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Indeed, given (q; �)∈M we get lower bounds for

sup
(s;v;�)∈X\{0}

[B(s; v; �); (q; �)]
‖(s; v; �)‖X

by taking (s; v; �)= (0; 0; �I) and (s; v; �)= (−q I; 0; 0), which yields the inf–sup condition
for B.
Next, we realize that the null space of the operator B is X̃ = X̃ 1 × M̃1, where X̃ 1 := {(s; v)∈

X1 : tr (s)=0 in �} and M̃1 := {�∈M1 :
∫
� tr (�)=0}. Thus, given �∈ M̃1 we get now lower

bounds for

sup
(s;v)∈ X̃ 1\{0}

[B1(s; v); �]
‖(s; v)‖X1

by taking (s; v)= (0;−div (�)) and (s; v)= (−dev (�); 0), which, using Lemma 3.1 in Ref-
erence [14], yields the inf–sup condition for B1. This lower bound is also obtained when
div (�)=0 or dev (�)= 0. We omit details.
Finally, we remark that the order of the continuous dependence constant C(�; �) follows

from the analysis provided in Section 2 of Reference [10] and from a particular case of
Proposition 2.3 in Reference [15].

3. THE MIXED FINITE ELEMENT SCHEME

In what follows we assume, for simplicity, that � is a polygonal curve. Then, we let {Th}h¿0
be a regular family of triangulations of �� by triangles T of diameter hT such that h := max{hT :
T ∈Th} and ��=∪{T :T ∈Th}. Also, we let X t1; h, X u1; h, M1; h, and M

p
h be �nite element

subspaces for the unknowns t, u, �, and p, respectively, and de�ne X1; h :=X t1; h ×X u1; h and
Mh :=M

p
h ×R. Then, the Galerkin scheme associated with problem (7) reads: Find ((th; uh);�h;

(ph; �h))∈X1; h ×M1; h ×Mh such that

[A1(th; uh); (sh; vh)] + [B1(sh; vh);�h] + [Bp(sh; vh); ph] = [F1; (sh; vh)]

[B1(th; uh); �h] + [B�(�h); �h] = [F2; �h]

[Bp(th; uh); qh] + [B�(�h); �h] = 0

(11)

for all ((sh; vh); �h; (qh; �h))∈X1; h ×M1; h ×Mh.
Our purpose is to de�ne these �nite element subspaces so that (11) becomes well posed.

As suggested by the linear version of Theorem 3.2 in Reference [10], it su
ces to prove
the ellipticity of A1 on X1; h and the discrete inf–sup conditions for B and B1. In order to
establish these properties we show below that the same arguments of the continuous case
can be applied again, which will yield to determine the appropriate �nite element spaces for
each unknown. To begin with, we realize that there is nothing else to prove for A1 since the
ellipticity of this bilinear form is certainly valid on any subspace of X1. Next, in order to
extend the proof of the continuous inf–sup condition for B to the discrete case, we require
that (0; 0; � I) and (qh I; 0; 0) belong to X t1; h ×X u1; h ×M1; h for any (qh; �)∈Mp

h ×R, that is
�I∈M1; h ∀�∈R and qhI∈X t1; h ∀qh ∈Mp

h (12)
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On the other hand, it is easy to see that the discrete kernel of the bilinear form B is given by
X̃ t1; h ×X u1; h × M̃1; h, where X̃ t1; h := {sh ∈X t1; h :

∫
� qh tr (sh)=0 ∀qh ∈Mp

h } and M̃1; h := {�h ∈M1; h :∫
� tr (�h)=0}.
We note here that M̃1; h is clearly a subspace of M̃1 and hence the equivalence of ‖�h‖[L2(�)]2×2

and ‖dev (�h)‖[L2(�)]2×2 also holds for each �h ∈ M̃1; h. Thus, in order to extend now the proof
of the continuous inf–sup condition for B1 to the discrete case, we need that

div (�h)∈X u1; h and dev (�h)∈ X̃ t1; h ∀�h ∈ M̃1; h (13)

Since (12) and (13) do not impose any explicit condition on the elements of Mp
h , we

choose this subspace of L2(�) as the simplest possible one, that is, as the piecewise constant
functions on the triangulation Th. Similarly, since the �rst restriction of (12) is satis�ed if the
piecewise constant tensors are included in M1; h, we just choose this subspace of H (div ; �)
as the Raviart–Thomas space of order zero (see References [11, 16]). Because of this choice
of M1; h, and in order to satisfy the �rst requirement of (13), we realize that it su
ces to take
X u1; h as the space of piecewise constant vectors on Th.
Finally, taking into account the choices already made for Mp

h and M1; h, and observing that
the trace of any deviator is zero, we �nd that the remaining conditions in (12) and (13) are
accomplished if X t1; h is chosen so that its restriction on each triangle T ∈Th becomes the
local space A0(T ) := 〈{I}〉 ⊕ dev ([RT0(T )RT0(T )]t), where 〈 〉 is used hereafter to denote
spanning, and

RT0(T ) :=

〈{(
1

0

)
;

(
0

1

)
;

(
x1

x2

)}〉

is the local Raviart–Thomas space of order zero. Moreover, it is not di
cult to see that

A0(T ) := [P0(T )]2×2 ⊕
〈{(

x1 2x2

0 −x1

)
;

(−x2 0

2x1 x2

)}〉
(14)

where P0(T ) denotes the space of constant functions de�ned on T .
According to the above analysis, our �nite element subspaces are given by

X t1; h := {s∈ [L2(�)]2×2 : s|T ∈A0(T ) ∀T ∈Th}

X u1; h := {v∈ [L2(�)]2 : v|T ∈ [P0(T )]2 ∀T ∈Th}

M1; h := {�∈H (div ; �) : (�i1 �i2)t|T ∈RT0(T ) ∀i∈ {1; 2} ∀T ∈Th}

and

Mp
h := {q∈L2(�) : q|T ∈P0(T ) ∀T ∈Th}

The well posedness of the discrete problem (11) and the corresponding quasi-optimal error
estimate can then be established.
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Theorem 2
Problem (11) has a unique solution ((th; uh);�h; (ph; �h))∈X1; h ×M1; h ×Mh. Moreover, there
exists a positive constant Ĉ(�; �)=O(�3=�), independent of h, such that

‖((t; u);�; (p; �))− ((th; uh);�h; (ph; �h))‖

6Ĉ(�; �) inf
((sh;vh);�h;qh)∈ X1; h ×M1; h ×Mp

h

‖((t; u);�; p)− ((sh; vh); �h; qh)‖ (15)

where ((t; u);�; (p; �)) is the unique solution of the continuous problem (7).

Proof
We �rst remark, since we are dealing with a linear problem, that the C�ea estimate (15) is
equivalent to stability of the Galerkin scheme (11). Now, as shown by our previous analysis,
the present �nite element subspaces guarantee the ellipticity of A1 on X1; h, with the same
constant �, as well as the discrete inf–sup conditions for B and B1, with constants depending
only on �. Hence, using again that ‖A1‖=O(�) and that both ‖B1‖ and ‖B‖ are of O(1), we
can apply the linear version of Theorem 3.2 in Reference [10] to deduce the unique solvability
of (11) and the corresponding stability with a constant behaving like O(�3=�).

Next, we have the following result on the rate of convergence of the solution of (11).

Theorem 3
Let ((t; u);�; (p; �)) and ((th; uh);�h; (ph; �h)) be the unique solutions of the continuous and
discrete formulations, respectively. Assume that t∈[H 1(�)]2× 2, u∈[H 1(�)]2, �∈ [H 1(�)]2× 2,
div (�)∈ [H 1(�)]2, and p∈H 1(�). Then there exists a positive constant �C(�; �)=O(�3=�),
independent of h, such that

‖((t; u);�; (p; �))− ((th; uh);�h; (ph; �h))‖X1×M1×M
6 �C(�; �)h(‖t‖[H 1(�)]2×2 + ‖�‖[H 1(�)]2×2 + ‖u‖[H 1(�)]2 + ‖div (�)‖[H 1(�)]2 + ‖p‖H 1(�))

Proof
It is a consequence of the C�ea estimate (15) and the well-known approximation properties
of the subspaces X t1; h, X

u
1; h, M1; h and M

p
h , which follow from classical error estimates for

projection and equilibrium interpolation operators (see, e.g. Reference [16]).

4. A POSTERIORI ERROR ANALYSIS

We now develop an a posteriori error analysis (based on suitable local problems) and derive
reliable estimates for the mixed �nite element solution introduced in the previous section.
Similarly as in Reference [9], our approach follows the technique from Reference [17], which
is a modi�cation of the original Bank–Weiser method proposed in Reference [18].
Let us �rst introduce some notations. We denote by Eh the set of all the edges of the triangu-

lation Th, de�ne Eh(�) := {e∈Eh : e⊆� }, and given T ∈Th, we let E(T ) := {e∈Eh : e⊆ @T}.
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In addition, the inner product of H (div ; T ) is denoted by 〈·; ·〉H (div ;T ), and nT stands for the
unit outward normal to @T .
On the other hand, given a polygonal domain S⊆R2 and m∈ (1;∞), the Sobolev space

W 1; m(S) is the Banach space of functions v∈Lm(S) such that the �rst-order distributional
derivatives of v are functions of Lm(S). A Sobolev imbedding theorem establishes that
W 1; m(S)⊆C( �S) if m ¿ 2 (see Reference [19] for details). Also, it is well known that
the trace theorem ensures the existence of a linear continuous map � :W 1; m(S)→Lm(@S)
such that �v= v|@S for each v∈W 1; m(S)∩C( �S). The range of �, which is a strict subspace
of Lm(@S), is denoted by W 1−1=m;m(@S). In particular, when S :=T ∈Th and m=2, we use
the standard notation and write H 1=2(@T ) instead of W 1=2;2(@T ).
Now, given an edge e∈E(T ), H 1

0 (e) stands for the closure in H
1(e) of the space of in�nitely

di	erentiable functions with compact support in e. We recall here that the interpolation space
with index 1

2 between H
1
0 (e) and L

2(e) is H 1=2
00 (e) (cf. Reference [19]). The space H

1=2
00 (e)

may be alternatively de�ned as the subspace of functions in H 1=2(e) whose extensions by
zero to the rest of @T belong to H 1=2(@T ). We will also need the dual space of H 1=2(@T ),
which is denoted by H−1=2(@T ). To this respect, we remark that the restriction of an element
in H−1=2(@T ) over e does not belong in general to H−1=2(e), but to H−1=2

00 (e), dual space of
H 1=2
00 (e) pivotal to L

2(e), and which is, therefore, larger than H−1=2(e). According to this, in
what follows we set 〈·; ·〉e for the duality pairing between [H−1=2

00 (e)]2 and [H 1=2
00 (e)]

2 with
[L2(e)]2 as pivot space, and we let 〈·; ·〉@T be the duality pairing between [H−1=2(@T )]2 and
[H 1=2(@T )]2 with [L2(@T )]2 as pivot space.
We now de�ne the Riesz projection of the error with respect to the inner product of

X :=X1 ×M1 as the unique element (�t; �u; ��)∈X such that

〈(�t; �u; ��); (s; v; �)〉X =[A(t − th; u − uh;� − �h); (s; v; �)] + [B(s; v; �); (p− ph; �− �h)]
for all (s; v; �)∈X , where A and B are the bilinear forms de�ned in Section 2, and

〈(�t; �u; ��); (s; v; �)〉X := 〈�t; s〉[L2(�)]2×2 + 〈�u; v〉[L2(�)]2 + 〈 ��; �〉H (div ;�)
In what follows, we assume that there exists m¿2 such that the Dirichlet datum g∈ [H 1=2(�)

∩W 1−1=m;m(�)]2 and let ’h be a given auxiliary function in [H 1(�)∩W 1; m(�)]2 such that
’h( �x)= g( �x) for each vertex �x of Th lying on �. In addition, for each T ∈Th we let
�̂T ∈H (div ; T ) be the unique solution of the local problem

〈�̂T ; �〉H (div ;T ) =Fh; T (�) ∀�∈H (div ; T ) (16)

where Fh; T ∈H (div ; T )′ is de�ned by

Fh; T (�) :=
∫
T
� : th +

∫
T
uh · div (�)− �h

∫
T
tr (�)− 〈�nT ; ’h〉@T +

∑
e∈E(T )∩Eh(�)

〈�nT ; ’h − g〉e

The following lemma provides an upper bound for ‖(�t; �u; ��)‖X .
Lemma 4
There holds

‖(�t; �u; ��)‖2X6
∑
T∈Th

�̂
2
T (17)
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where

�̂
2
T := ‖�̂T‖2H (div ;T ) + ‖�h − �th + phI‖2[L2(T )]2×2 + ‖f + div (�h)− �uh‖2[L2(T )]2

Proof
The proof utilizes the same arguments of Lemma 3.1 in Reference [9]. We only remark
here that the regularity hypotheses on g and ’h guarantee, by virtue of a Sobolev imbedding
theorem, that g and ’h are both continuous, and hence the associated interpolation condition
for the vertices of Th lying on � makes sense. We omit further details.

A priori estimates for the solutions of the local problems (16) are given in the following
lemma.

Lemma 5
There exists C¿0, independent of h, �, �, and T , such that

‖�̂T‖2H (div ;T )6C

(
‖th − ∇’h‖2[L2(T )]2×2 + ‖uh − ’h‖2[L2(T )]2

+ h2T |�h|2 +
∑

e∈E(T )∩Eh(�)
‖’h − g‖2

[H 1=200 (e)]
2

)

Furthermore, for any z∈ [H 1(�) ∩W 1; m(�)]2, with m¿2, such that z= g on �, we get

‖�̂T‖2H (div ;T )6C
(
‖th − ∇z‖2[L2(T )]2×2 + ‖uh − z‖2[L2(T )]2 + h2T |�h|2 + ‖Jh; T (z)‖2[H 1=2(@T )]2

)
where

Jh; T (z) :=

{
0 on @T ∩ �
z − ’h otherwise

Proof
It is clear from (16) that ‖�̂T‖H (div ;T ) = ‖Fh; T‖H (div ;T )′ . Therefore, the �rst estimate for
‖�̂T‖H (div ;T ) follows after applying Gauss’ formula to the expression 〈�nT ; ’h〉@T appearing in
the de�nition of the functional Fh; T , and reordering the resulting terms so that the Cauchy–
Schwarz inequality can be applied conveniently. The proof of the second estimate is similar.
One just needs to observe, after simple computations, that

−〈�nT ; ’h〉@T +
∑

e∈E(T )∩Eh(�)
〈�nT ; ’h − g〉e=−〈�nT ; z〉@T + 〈�nT ;Jh; T (z)〉

The rest proceeds as in the �rst case, applying now Gauss’ formula to 〈�nT ; z〉@T .
The above lemmata allow us to establish next the main a posteriori error estimates.

Theorem 6
There exists a positive constant C0(�; �)=O(�3=�), independent of h, such that

‖(t; u;�; p; �)− (th; uh;�h; ph; �h)‖X1×M1×M 6C0(�; �)
{ ∑
T∈Th

�̃2T

}1=2
(18)
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and

‖(t; u;�; p; �)− (th; uh;�h; ph; �h)‖X1×M1×M6C0(�; �)
{ ∑
T∈Th

�2T

}1=2
(19)

where for each triangle T ∈Th, we de�ne

�̃2T := ‖�̂T‖2H (div ;T ) + ‖�h − �th + phI‖2[L2(T )]2×2

+‖f + div (�h)− �uh‖2[L2(T )]2 + ‖tr (th)‖2L2(T ) (20)

and

�2T := ‖th − ∇’h‖2[L2(T )]2×2 + ‖uh − ’h‖2[L2(T )]2 + h2T |�h|2

+
∑

e∈E(T )∩Eh(�)
‖’h − g‖2

[H 1=200 (e)]
2 + ‖�h − �th + phI‖2[L2(T )]2×2

+ ‖f + div (�h)− �uh‖2[L2(T )]2 + ‖tr (th)‖2L2(T ) (21)

Proof
It is similar to the proof of Theorem 2.1 in Reference [9]. Indeed, the continuous dependence
result given in Theorem 1 (cf. (10)) is equivalent to the global inf–sup condition for the
linear operator obtained by adding the three equations of the left-hand side of (7). Hence, by
applying this condition to the error (t; u;�; p; �) − (th; uh;�h; ph; �h), and using the de�nition
of the Riesz projection (�t; �u; ��)∈X , the de�nition of the operator B, the third equation of the
continuous problem (7), and Lemmas 4 and 5, we obtain estimates (18) and (19). The details
are omitted.

According to the previous theorem, we now introduce the reliable a posteriori error esti-
mates

�̃ :=

{ ∑
T∈Th

�̃2T

}1=2
and � :=

{ ∑
T∈Th

�2T

}1=2
(22)

In addition, we establish next that �̃ is quasi-e�cient, which means that it is e
cient up
to a term depending on the traces (u−’h) on the edges of Th. We also remark that, besides
the regularity and interpolation conditions, Lemmas 4, 5 and Theorem 6 do not require any
further assumptions on ’h. However, as we show below, the above-mentioned quasi-e�ciency
will restrict the possible choices of this auxiliary function.

Lemma 7
Assume that u∈ [W 1; m(�)]2, with m¿2. Then there exists a positive constant C1(�)=O(�2),
independent of h, such that for all T ∈Th

�̃2T 6C1(�){‖t − th‖2[L2(T )]2×2 + ‖u − uh‖2[L2(T )]2 + ‖� − �h‖2H (div ;T )
+ ‖p− ph‖2L2(T ) + h2T |�− �h|2 + ‖Jh; T (u)‖2[H 1=2(@T )]2} (23)

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:877–903



888 R. BUSTINZA, G. N. GATICA AND M. GONZ �ALEZ

and hence

�̃2 6 C1(�)

{
‖(t; u;�; p; �)− (th; uh;�h; ph; �h)‖2X1×M1×M +

∑
T∈Th

‖Jh; T (u)‖2[H 1=2(@T )]2
}

where

Jh; T (u) :=

{
0 on @T ∩ �
u − ’h otherwise

Proof
It is similar to the proof of Lemma 4.1 in Reference [9]. We omit the details here.

At this point we remark that, although the reliable a posteriori error estimate �̃ is also
quasi-e�cient, its eventual applicability is limited by the fact that it requires the knowledge
of the exact solutions �̂T of the local problems (16), which live all in the in�nite dimensional
space H (div ; T ). This di
culty can be partially overcome by using h, p or h−p versions of
the �nite element method to solve (16) approximately, which naturally yields approximations
of the local indicators �̃T , and hence of �̃. We will go back to this point in Section 5.
On the other hand, the advantage of �, which is not necessarily quasi-e�cient, is that it

does not need the exact or any approximate solution of (16), but a suitable ’h. In order to
choose this auxiliary function, we adopt the criterion of enforcing the quasi-e�ciency of �̃ so
that it becomes closer to full e
ciency. As established in Lemma 7, this criterion requires that
the traces ’h|@T be as close as possible to the exact traces u|@T , for each T ∈Th. According
to this, and taking into account the �nite element subspaces de�ning the discrete scheme, we
propose next a heuristic procedure to choose ’h. Hereafter, given a nonnegative integer l,
Pl(T ) denotes the space of polynomials of degree 6l de�ned on T .
We �rst compute local functions ’h;T , for each T ∈Th, satisfying:

1. ’h;T ∈ [P2(T )]2.
2. ∇’h;T is the [L2(T )]2×2-projection of th|T onto the space ∇ [P2(T )]2.
3. ’h;T (�xT )= uh|T , where �xT is the barycentre of T .
It is easy to see that each ’h;T is uniquely determined by the above conditions. Then,

similarly as in Reference [20], we now de�ne ’h as the continuous average of the functions
’h;T . In other words, ’h is the unique function in [C( ��)]2 satisfying:

1. ’h|T ∈ [P2(T )]2 for each T ∈Th.
2. For each vertex �x of Th lying on � and for each middle point �x of the edges e∈Eh(�),
’h(�x)= g(�x).

3. For each vertex �x of Th lying in � and for each middle point �x of the edges e∈Eh −
Eh(�), ’h(�x) is the average of the values ’h;T (�x) on all the triangles T ∈Th to which
�x belongs.

We observe here that the computations of the local functions ’h;T (through a projection
argument) and the global P2-interpolant ’h are standard procedures in the �nite element
method. Moreover, they are comparable (in complexity) to the computations of approximate
solutions of the local problems (16) via higher order H (div;T ) subspaces.
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5. NUMERICAL RESULTS

In this section, we provide several numerical examples illustrating the performance of the
mixed �nite element scheme (11) and the fully explicit a posteriori error estimate � (cf. (21)
and (22)) with the above described choice of the auxiliary function ’h.
Hereafter, N is the number of degrees of freedom de�ning the subspaces X1; h, M1; h, and

Mh, that is, N := 9 (number of triangles of Th)+2 (number of edges of Th)+1, which leads
asymptotically to 12 unknowns per triangle. In order to compare this amount with the num-
ber of unknowns employed by more traditional approaches, we consider the P1-isoP1 �nite
element pair for the usual primal-mixed variational formulation of the generalized Stokes
problem. In this case, the pressure is approximated by continuous piecewise linear elements
on a triangular mesh, and the velocity is approximated by continuous piecewise linear ele-
ments on the �ner mesh obtained by re�ning each element in the pressure mesh into four
elements using the midpoints of each side. It is not di
cult to see that these �nite element
subspaces lead asymptotically to 4.5 degrees of freedom per triangle. We emphasize then that
the additional cost of 7.5 unknowns per triangle in our present mixed approach is certainly
justi�ed by the fact that two other quantities of physical interest (t and �) are approximated
directly, without any need of numerical postprocessing. In addition, on the contrary to the
P1-isoP1 approximation where one has to impose continuity requirements at each node for the
pressure ph and at each node and midpoint for the components of the velocity uh, we only
need here to consider the continuity of the normal components of the �ux �h at the edges
of the triangulation. This yields therefore a much simpler computation of the global sti	ness
matrix of the present mixed �nite element method since all the sub-matrices connecting only
the other three main unknowns (th, uh, and ph) become block-diagonal (in a general sense
including rectangular matrices). Consequently, computing in particular the inverse of the sub-
matrix generated by th and uh is straightforward, which allows to eliminate these unknowns,
thus simplifying signi�cantly the solution procedure of the whole discrete system (11).
We now provide further notations. The individual and global errors are de�ned as follows:

e(t) := ‖t − th‖[L2(�)]2×2 ; e(u) := ‖u − uh‖[L2(�)]2

e(�) := ‖� − �h‖H (div ;�); e(p) := ‖p− ph‖L2(�); e(�) := |�− �h|

and

e := {[e(t)]2 + [e(�)]2 + [e(p)]2 + [e(u)]2 + [e(�)]2}1=2

where (t; u;�; p; �) and (th; uh;�h; ph; �h) are the unique solutions of the continuous and discrete
mixed formulations, respectively. In addition, the e	ectivity index associated to the a posteriori
error estimate � is given by e=�. Also, given two consecutive triangulations with degrees of
freedom N and N ′, and corresponding total errors given by e and e′, the experimental rate
of convergence is de�ned by � := − 2[(log(e=e′))=(log(N=N ′))].
On the other hand, the adaptive algorithm used in the mesh re�nement process is the

following (see Reference [21]):

1. Start with a coarse mesh Th.
2. Solve the discrete problem (11) for the current mesh Th.
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3. Compute the auxiliary function ’h.
4. Compute �T for each triangle T ∈Th.
5. Evaluate stopping criterion and decide to �nish or go to next step.
6. Use blue–green procedure to re�ne each T ′ ∈Th whose indicator �T ′ satis�es

�T ′¿ 1
2 max{�T :T ∈Th}

7. De�ne resulting mesh as current mesh Th and go to step 2.

We remark here that the H 1=2-norm appearing in the computation of �T (cf. (21)) is ap-
proximated by means of an interpolation estimate, that is, given e∈E(T )∩Eh(�), we consider
the bound

‖’h − g‖2
[H 1=200 (e)]

26‖’h − g‖[L2(e)]2‖’h − g‖[H 10 (e)]2

The numerical results presented below were obtained in a Compaq Alpha ES40 Parallel
Computer using a MATLAB code. We consider four examples of the generalized Stokes
problem (1), with di	erent choices of the parameters � and � for three of them. The data f
and g are chosen so that the velocity u := (u1; u2)t and the pressure p are the ones shown
below in Table I. Example 1 considers smooth solutions for both unknowns. Then, Examples
2 and 4 illustrate the case of velocities with boundary and inner layers, respectively. More
precisely, u has a boundary layer around the origin in Example 2, while u has an inner layer
around the line x2 = 0:5− x1 in Example 4. Finally, Example 3 considers the case of u with
a singularity around the exterior neighbourhood of the boundary point (1,1). Certainly, the
velocities of the four examples are divergence free.
Before commenting on the numerical results obtained, we observe in advance that the

information on the individual error e(�) is not displayed below since it converges very rapidly
to zero in all the examples considered.
In Tables II and III we give the individual and global errors, the e	ectivity index e=�,

and the experimental rate of convergence � for the uniform re�nement as applied to Example
1 with pairs of parameters (�; �)= (10; 1) and (�; �)= (100; 1). In addition, Figures 1 and 3
show the corresponding individual errors vs the degrees of freedom N . We observe here that
the rates of convergence behave as predicted by the theory, that is, of O(h), and that, due to
the order of the constant �C(�; �) in Theorem 3, some of these rates begin to deteriorate as �
increases. We also notice that the dominant components of the global error are given by e(t)
and e(�). Further, the e	ectivity indexes remain bounded above and below as N increases
(with smaller lower bounds for bigger �), which con�rms the reliability of � and provides
numerical evidences for it being e
cient. However, as shown in Figures 2 and 4, and due to

Table I. Domain and exact solution for each example.

Example � u1(x1; x2) u2(x1; x2) p(x1; x2)

1 (−1; 1)2 −ex1 (x2 cos(x2) + sin(x2)) ex1x2 sin(x2) 2ex1 sin(x2)
2 (0; 1)2 −√

�e−
√
�(x1+x2) −u1(x1; x2) 2e2x1−1 sin(2x2 − 1)

3 (−1; 1)2 −(2:1− x1 − x2)−1=3 −u1(x1; x2) 2ex1 sin(x2)
4 (0; 1)2 −√

�e−
√
�(0:5−x1−x2)2 −u1(x1; x2) 2e2x1−1 sin(2x2 − 1)
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Table II. Individual errors, total error e, e	ectivity index, and global rate of convergence
for the uniform re�nement (Example 1, �=10; �=1).

N e(t) e(u) e(�) e(p) e e=� �

29 3.5762 2.4040 7.7467 3.6114 9.5720 0.3968 —
105 2.2827 1.2595 4.3739 2.0922 5.5051 0.4343 0.8598
401 1.3824 0.6473 2.5351 1.2701 3.2203 0.4912 0.8002
1569 0.7853 0.3244 1.2887 0.6462 1.6735 0.5029 0.9596
6209 0.4206 0.1616 0.5951 0.2791 0.7969 0.4755 1.0787
24705 0.2163 0.0806 0.2776 0.1196 0.3803 0.4525 1.0710
98561 0.1092 0.0402 0.1343 0.0548 0.1860 0.4423 1.0338

Table III. Individual errors, total error e, e	ectivity index, and global rate of convergence
for the uniform re�nement (Example 1, �=100; �=1).

N e(t) e(u) e(�) e(p) e e=� �

29 3.3494 2.3697 10.3296 4.1105 11.8504 0.0500 —
105 2.0578 1.2424 7.7385 3.1434 8.6916 0.0700 0.4818
401 1.1765 0.6395 5.8418 2.3861 6.4509 0.1011 0.4449
1569 0.6821 0.3224 3.3689 1.4000 3.7254 0.1158 0.8048
6209 0.3909 0.1613 1.4540 0.6076 1.6317 0.1013 1.2003
24705 0.2109 0.0806 0.5048 0.2096 0.5914 0.0734 1.4697
98561 0.1084 0.0402 0.1765 0.0720 0.2230 0.0553 1.4095

Figure 1. Errors vs N for the uniform re�nement (Example 1, �=10; �=1).

the fact that the solution of Example 1 is smooth, there is no relevant di	erence between the
uniform and adaptive procedures for the global error e vs N .
The numerical results concerning Example 2 are presented in Tables IV and V where we

display the individual and global errors, the e	ectivity index e=�, and the experimental rate of
convergence � for both re�nements with (�; �)= (100; 0:5) and (�; �)= (1000; 0:5). We note
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Figure 2. e vs N for both re�nements (Example 1, �=10; �=1).

Figure 3. Errors vs N for the uniform re�nement (Example 1, �=100; �=1).

from these tables that only e(�) constitutes now the dominant part of e. In addition, we
observe a very clear di	erence between the uniform and adaptive re�nements. The global
error e of the latter decreases much faster than that of the former, thus recovering the rate
of convergence O(h). As shown in Figures 5 and 6, this fact is even more pronounced for
�=1000 where the convergence of the uniform re�nement is very slow. However, although
the e	ectivity indexes remain bounded above and below as N increases, for the two pairs
of parameters and for both re�nements, they also increase as � gets larger. Next, Meshes 1
and 2 display some intermediate meshes obtained with the adaptive re�nement algorithm.
It is interesting to con�rm, as expected, that the procedure is able to recognize the bound-
ary layer around (0; 0). Also, we remark that this re�nement is even more localized near
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Figure 4. e vs N for both re�nements (Example 1, �=100; �=1).

Table IV. Individual errors, total error e, e	ectivity index, and global rate of convergence
for both re�nements (Example 2, �=100; �=0:5).

N e(t) e(u) e(�) e(p) e e=� �

105 5.4391 0.5032 50.7765 3.2059 51.1700 4.5545 —
401 4.7510 0.5047 50.7097 2.4017 50.9908 8.0530 0.0052
1569 2.7950 0.3270 32.8015 1.1490 32.9420 10.4012 0.6405
6209 1.5002 0.1760 17.6482 0.4435 17.7182 11.1071 0.9016
24705 0.7768 0.0896 8.9857 0.1716 9.0213 11.1273 0.9775
98561 0.3937 0.0450 4.5126 0.0740 4.5305 11.0640 0.9955

105 5.4391 0.5032 50.7765 3.2059 51.1700 4.5545 —
251 4.7575 0.5050 50.7475 2.3963 51.0289 7.9226 0.0063
397 2.8246 0.3287 33.0313 1.5115 33.1880 9.5209 1.8766
543 1.7132 0.1857 18.7508 1.2146 18.8690 8.0700 3.6061
1105 1.2094 0.1080 10.9389 0.9160 11.0442 7.3584 1.5077
2642 0.7755 0.0624 6.3504 0.6207 6.4279 6.5904 1.2418
4890 0.6248 0.0518 5.2416 0.3865 5.2931 7.2317 0.6310
11810 0.4113 0.0303 3.0674 0.2027 3.1016 6.3483 1.2122
26486 0.2902 0.0217 2.2001 0.1144 2.2222 6.4654 0.8256
47876 0.2133 0.0150 1.5206 0.0723 1.5373 6.0896 1.2448
99636 0.1528 0.0112 1.1353 0.0447 1.1464 6.3580 0.8004
190594 0.1084 0.0075 0.7664 0.0289 0.7746 6.0338 1.2089

the origin for �=1000, which is due to the fact that this layer becomes thinner as � gets
larger.
Next, Tables VI and VII provide the numerical results obtained for Example 3 with

(�; �)= (10; 1) and (�; �)= (100; 1). As for the previous examples, e(�) is again the dom-
inant part of the global error e. Also, we observe that the e	ectivity indexes remain bounded
above and below as the number of degrees of freedom N increases, with bounds close to
1:0, which con�rms the reliability of � and constitutes numerical evidences of its eventual
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Table V. Individual errors, total error e, e	ectivity index, and global rate of convergence
for both re�nements (Example 2, �=1000; �=0:5).

N e(t) e(u) e(�) e(p) e e=� �

105 7.0383 0.0643 65.0020 5.0629 65.5777 1.0652 —
401 12.9106 0.3337 334.0185 7.4337 334.3507 7.3412 —
1569 17.7197 0.5382 538.4277 8.1264 538.7808 18.2978 —
6209 12.7694 0.4502 450.3525 5.3283 450.5652 28.8851 0.2599
24705 7.1160 0.2680 268.0732 2.3559 268.1781 34.7400 0.7514
98561 3.7577 0.1404 140.4863 0.9185 140.5396 36.0464 0.9339

105 7.0383 0.0643 65.0020 5.0629 65.5777 1.0652 —
251 12.9142 0.3338 334.0546 6.6592 334.3706 7.3370 —
397 17.7427 0.5382 538.4458 7.0993 538.7851 18.2613 —
543 12.8121 0.4501 450.2576 4.9853 450.4676 28.6842 1.1433
689 7.2888 0.2693 269.4196 2.6824 269.5316 33.3358 4.3135
835 4.7125 0.1543 154.4175 1.8963 154.5011 29.2990 5.7909
1722 2.7302 0.0798 79.8489 1.4523 79.9088 25.8793 1.8217
3839 1.6684 0.0463 46.3600 1.3075 46.4084 24.4862 1.3555
7031 1.2912 0.0363 36.4156 1.1266 36.4560 25.8745 0.7977
14781 0.8664 0.0239 24.0379 1.0019 24.0744 24.4694 1.1169
27310 0.6568 0.0182 18.2701 0.7172 18.2960 25.0696 0.8941
56312 0.4520 0.0123 12.3484 0.5608 12.3694 24.2670 1.0818
110822 0.3375 0.0090 9.0979 0.2983 9.1090 24.2919 0.9038

Figure 5. e vs N for both re�nements (Example 2, �=100; �=0:5).

e
ciency. In addition, according to the experimental rates of convergence, which are also
illustrated in Figures 7 and 8, the adaptive procedure yields again the quasi-optimal rate of
convergence O(h) for the global error e. Moreover, as expected, the adaptive re�nement al-
gorithm is able to identify the singularities of the problem. In fact, as shown by Meshes 3
and 4, the adapted meshes are highly re�ned around the boundary point (1; 1), in whose outer
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Figure 6. e vs N for both re�nements (Example 2, �=1000; �=0:5).
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Meshes 1. Adapted intermediate meshes with 26 486 and 99 636 degrees of freedom,
respectively, for Example 2, �=100; �=0:5.

neighbourhood the singularity lives. Further, similarly as for Example 2, the re�nement is
even more localized as � gets larger.
Finally, the numerical results concerning Example 4 with (�; �)= (1000; 0:5) are collected

in Table VIII. The remarks and conclusions here are similar to those for Examples 2 and 3.
Again, the e	ectivity indexes remain bounded, with bounds around 0.11, and, although the
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Meshes 2. Adapted intermediate meshes with 14 781 and 56 312 degrees of freedom,
respectively, for Example 2, �=1000; �=0:5.

Table VI. Individual errors, total error e, e	ectivity index, and global rate of convergence
for both re�nements (Example 3, �=10; �=1).

N e(t) e(u) e(�) e(p) e e=� �

29 0.7664 0.4607 6.0365 2.8186 6.7219 1.5756 —
105 0.8281 0.2984 5.1990 2.0257 5.6487 1.8869 0.2703
401 0.6839 0.1733 5.3278 1.1694 5.5001 1.3734 0.0398
1569 0.4615 0.0898 5.3663 0.5403 5.4139 1.1420 0.0231
6209 0.2660 0.0447 4.3239 0.2269 4.3382 1.0762 0.3220
24705 0.1407 0.0223 2.7594 0.0984 2.7649 1.0551 0.6523
98561 0.0718 0.0111 1.5160 0.0454 1.5185 1.0483 0.8662

29 0.7664 0.4607 6.0365 2.8186 6.7219 1.5756 —
105 0.8281 0.2984 5.1990 2.0257 5.6487 1.8869 —
325 0.6916 0.1767 5.3524 1.1959 5.5307 1.3761 —
471 0.5949 0.1254 5.5517 0.9228 5.6606 1.1705 —
617 0.5444 0.1105 4.6251 0.8722 4.7393 1.1340 1.3158
763 0.5281 0.1074 3.2728 0.8655 3.4280 1.1900 3.0502
909 0.5244 0.1069 2.4193 0.8646 2.6243 1.3368 3.0515
1055 0.5238 0.1069 2.1416 0.8644 2.3706 1.4524 1.3654
3126 0.3502 0.0570 1.1486 0.4108 1.2704 1.3863 1.1485
8157 0.2154 0.0305 0.6736 0.2004 0.7357 1.3126 1.1390
12794 0.1926 0.0258 0.5409 0.1717 0.5998 1.3094 0.9071
32524 0.1147 0.0148 0.3269 0.0905 0.3583 1.2666 1.1042
54229 0.0949 0.0117 0.2551 0.0726 0.2819 1.2478 0.9378
130544 0.0578 0.0071 0.1621 0.0423 0.1774 1.2398 1.0541
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Table VII. Individual errors, total error e, e	ectivity index, and global rate of convergence
for both re�nements (Example 3, �=100; �=1).

N e(t) e(u) e(�) e(p) e e=� �

29 0.3670 0.3899 7.2973 2.9958 7.9065 0.2145 —
105 0.4457 0.2537 7.0634 2.8054 7.6175 0.3444 0.0578
401 0.4376 0.1525 6.7047 2.1753 7.0639 0.6181 0.1125
1569 0.3580 0.0849 5.9249 1.2798 6.0727 1.0757 0.2216
6209 0.2400 0.0441 4.4515 0.5381 4.4906 1.3042 0.4388
24705 0.1363 0.0222 2.7790 0.1799 2.7883 1.2948 0.6901
98561 0.0712 0.0111 1.5186 0.0607 1.5215 1.2738 0.8754

29 0.3670 0.3899 7.2973 2.9958 7.9065 0.2145 —
105 0.4457 0.2537 7.0634 2.8054 7.6175 0.3444 0.0578
251 0.4305 0.1595 7.1218 2.4020 7.5300 0.6149 0.0264
789 0.3678 0.0912 6.4211 1.7284 6.6605 1.0505 0.2142
2483 0.2812 0.0501 4.7966 0.9914 4.9063 1.2275 0.5332
2629 0.2520 0.0431 3.4981 0.9790 3.6415 0.9561 10.4354
2947 0.2383 0.0403 2.6186 0.9350 2.7910 0.8150 4.6587
4633 0.2129 0.0327 1.9695 0.7235 2.1093 0.7499 1.2380
11357 0.1568 0.0214 1.3188 0.3226 1.3669 0.7916 0.9675
22547 0.1249 0.0147 0.7832 0.2293 0.8257 0.6380 1.4699
46839 0.0819 0.0101 0.5382 0.1011 0.5538 0.6511 1.0928
89728 0.0673 0.0074 0.3716 0.0744 0.3850 0.5881 1.1184
187253 0.0423 0.0051 0.2704 0.0362 0.2761 0.6391 0.9030

Figure 7. e vs N for both re�nements (Example 3, �=10; �=1).

experimental rates of convergence of both re�nements approach 1 as N increases, the global
error of the adaptive one begins to decrease before than the uniform one. This fact is clearly
observed in Figure 9 where the curve e vs N is shown. In addition, as expected, the corre-
sponding adaptive re�nement algorithm is able to recognize the inner layer of the problem.
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Figure 8. e vs N for both re�nements (Example 3, �=100; �=1).
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Meshes 3. Adapted intermediate meshes with 3126 and 54 229 degrees of freedom,
respectively, for Example 3, �=10; �=1.

Indeed, as can be seen in Meshes 5, the adapted meshes are highly re�ned around the line
x2 = 0:5 − x1. We also notice here that the re�nements identify a thin band exactly on this
line, which corresponds to the �at behaviour of the solution caused by the power 2 in the
exponent of the exponential function.
On the other hand, although we mentioned before that the solutions of the local problems

(16) could be approximated via higher order H (div;T ) subspaces, we show next that this
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Meshes 4. Adapted intermediate meshes with 4633 and 46 839 degrees of freedom,
respectively, for Example 3, �=100; �=1.

Table VIII. Individual errors, total error e, e	ectivity index, and global rate of convergence
for both re�nements (Example 4, �=1000; �=0:5).

N e(t) e(u) e(�) e(p) e e=� �

105 74.3233 10.9499 975.4179 26.3889 978.6626 0.0838 —
401 43.9757 7.2191 790.4335 25.1620 792.0885 0.1017 0.3156
1569 32.5849 4.0695 513.2866 11.7287 514.4697 0.1160 0.6326
6209 17.3618 2.1141 264.9580 5.2669 265.5869 0.1147 0.9613
24705 8.9221 1.0675 132.0790 2.1941 132.4025 0.1130 1.0080
98561 4.5016 0.5350 65.7869 0.8889 65.9489 0.1123 1.0074

105 74.3233 10.9499 975.4179 26.3889 978.6626 0.0838 —
251 47.5896 7.5069 785.4328 25.8358 787.3331 0.0978 0.4992
907 34.5913 4.2248 536.2225 13.2819 537.5178 0.1164 0.5942
2111 20.9361 2.1538 292.7591 8.1437 293.6276 0.1247 1.4315
7141 11.2381 1.1037 148.3617 4.1104 148.8476 0.1240 1.1149
17599 9.4008 0.6518 91.1181 3.1416 91.6579 0.1334 1.0750
30105 5.9042 0.5120 68.4031 2.1752 68.6938 0.1244 1.0744
87607 4.1128 0.2886 41.6759 1.6638 41.9124 0.1367 0.9250
120853 3.5184 0.2520 33.8690 1.3457 34.0788 0.1243 1.2862

additional computational e	ort would not necessarily improve the e
ciency of the a posteriori
error estimate. To this end, we now identify the main components of �, which are given
by those terms providing, respectively, the a priori bounds for the local solutions �̂T , and
the residuals of the constitutive, equilibrium, and compressibility equations. More precisely,
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Figure 9. e vs N for both re�nements (Example 4, �=1000; �=0:5).

according to (21) and (22), we can write �= {�2’ + �2res}1=2, where

�2’ :=
∑
T∈Th

{‖th − ∇’h‖2[L2(T )]2×2 + ‖uh − ’h‖2[L2(T )]2 + h2T |�h|2}+
∑

e∈Eh(�)
‖’h − g‖2

[H 1=200 (e)]
2

and

�2res :=
∑
T∈Th

{‖�h − �th + phI‖2[L2(T )]2×2 + ‖f + div (�h)− �uh‖2[L2(T )]2 + ‖tr (th)‖2L2(T )}

Then, in Table IX we display the components �’ and �res for the examples considered in
this section. We observe there that in most cases the component �res is the very dominant
one. The only exception is the situation concerning Example 2 in which �’ and �res are of the
same order. Consequently, any improvement in the a priori bound for �̂T (even if it could be
computed exactly) will not modify the e
ciency of the a posteriori error estimator. In other
words, these examples support the belief that �̃ will not necessarily yield better results than
those given by �.
As general remarks, we would like to observe �rst that the numerical examples presented

here behave much better than what the previous theoretical results insinuated. In particular, the
order of the constants obtained in Theorems 2 and 3 indicate that the rates of convergence are
a	ected by large values of �, which, nevertheless, was not too severe in the examples. Further,
since � is proportional to the inverse of the time-step �t, the estimates provided in these
theorems also indicate that the convergence of time-dependent solutions should deteriorate as
�t decreases. Whether this holds exactly as predicted by the theory or behaves better than
that is something to be seen from corresponding numerical results. Now, according to the
constants in Theorem 6 and Lemma 7, one would have expected e	ectivity indexes between
O(�−1) and O(�3=�). However, as we could see, they all lie on ranges much tighter than
that, they do not deteriorate as N increases, and they additionally improve when passing
from uniform to adaptive re�nements. The above observations yield the conjecture that these
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Meshes 5. Adapted intermediate meshes with 7141, 17 599, 30 105 and 87 607 degrees of freedom,
respectively, for Example 4, �=1000; �=0:5.

constants are overestimated and that they could be improved. In addition, our conclusion
is that the proposed mixed method is perhaps not so competitive for extremely large val-
ues of �, but it does constitute a good alternative for moderately large values of this pa-
rameter. Finally, we emphasize that the examples provide enough support for the adaptive
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Table IX. Main components of the a posteriori error estimate �.

N �’ �res N �’ �res

Example 1 (�=10; �=1) Example 1 (�=100; �=1)
29 4.5135 23.6942 29 4.3964 236.8632
105 2.5688 12.4118 105 2.4076 124.1070
401 1.5104 6.3792 401 1.3361 63.7909
1569 0.8615 3.2136 1569 0.7612 32.1361
6209 0.4659 1.6099 6209 0.4345 16.0988
24705 0.2404 0.8053 24705 0.2346 8.0533
98561 0.1213 0.4027 98561 0.1205 4.0271

Example 2 (�=1000; �=0:5) Example 3 (�=10; �=1)
105 61.5259 2.1109 29 1.9781 3.7799
251 45.5072 2.4457 105 1.3309 2.6815
397 29.3608 2.9050 325 0.8823 3.9209
543 15.4992 2.5303 471 0.6377 4.7937
689 7.8532 1.9235 617 0.5360 4.1447
835 4.9966 1.6857 763 0.5107 2.8349
1722 2.8452 1.1997 909 0.5060 1.8968
3839 1.7123 0.8124 1055 0.5053 1.5520
7031 1.3031 0.5357 3126 0.3455 0.8487
14781 0.8945 0.4096 8157 0.2140 0.5180
27310 0.6765 0.2737 12794 0.1890 0.4173
56312 0.4681 0.2018 32524 0.1141 0.2589
110822 0.3512 0.1313 54229 0.0942 0.2054

130544 0.0576 0.1310

Example 3 (�=100; �=1) Example 4 (�=1000; �=0:5)
29 1.7393 36.8189 105 75.8505 11672.9488
105 1.1333 22.0862 251 55.7055 8048.8130
251 0.7085 12.2245 907 34.1669 4614.5160
789 0.4471 6.3244 2111 20.4605 2353.0475
2483 0.2940 3.9861 7141 11.3901 1199.6719
2629 0.2491 3.8005 17599 9.3005 687.0050
2947 0.2356 3.4162 30105 5.9360 552.0031
4633 0.2104 2.8048 87607 4.1046 306.5056
11357 0.1580 1.7195 120853 3.5123 274.0432
22547 0.1249 1.2881
46839 0.0824 0.8465
89728 0.0680 0.6510
187253 0.0427 0.4300

algorithm being much more e
cient than a uniform re�nement when solving the discrete
scheme.
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